首页> 外文OA文献 >Choice of RF coils at 9.4T: SNR and B1+ of transceiver and transmit-only receive-only arrays
【2h】

Choice of RF coils at 9.4T: SNR and B1+ of transceiver and transmit-only receive-only arrays

机译:可选择9.4T的RF线圈:收发器和仅发送接收阵列的sNR和B1 +

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose/Introduction: Signal to noise ratio (SNR) and transmit efficiency are the most important considerations in RF coil design. Tight fitting transceiver (TxRx) arrays are often used to optimize the transmit efficiency [1], while large transmit arrays in combination with tight-fitting receive arrays (ToRo) are used for optimum SNR [2]. In this study, a ToRo coil with 8-transmit elements and 18-receive elements was constructed with the aim to approach the transmit efficiency of transceiver arrays while retaining the SNR advantage of receive-only arrays. Subjects and Methods: Experiments were performed on a Siemens 9.4 T whole body scanner. The tight-fitting (20 9 23 cm) 8-channel TxRx array used in this study was presented previously [1]. In the new ToRo coil, the transmit array consisted of eight evenly spaced gapped loops on a circular tube (outer diameter = 26 cm). Each loop was tuned with 12-capacitors and actively detuned with a PIN diode in series. Adjacent elements were inductively decoupled. Both transmit arrays had a length of 10 and 4 cm gap to the shield. The receive part consisted of 18-receive elements arranged in three rows on a helmet (nine in the top row, seven and two in the 2nd and 3rd row, respectively). Adjacent elements in the same row were inductively decoupled and each element of the lower row geometrically decoupled with two elements of the upper row. The full setup is shown in Fig. 1. Results: Coupling between adjacent transmit elements was\-20 dB and active detuning in transmit and receive array was\-30 dB. The measured transmit field closely followed the predicted pattern from simulations whereas the difference in mean B1 + in the central axial slice (B1 + avg) was below 9 compared to the numerical model (Fig. 2a/b). Compared to the TxRx array the B1 + avg of the ToRo configuration was, however, 18 weaker (Fig. 2c). This includes additional losses caused by the receive array and active detuning circuits. Nevertheless, the ToRo coil provided substantially higher SNR than the TxRx configuration (Fig. 3). Discussion/Conclusion: The designed ToRo array provided high B1 + efficiency, but, not to the level of tight fitting TxRx arrays. Since ToRo arrays are loosely coupled to the load, it doesn’t have to be tuned and matched for every experiment. Furthermore, ToRo configuration provides significantly higher SNR and better parallel imaging performance due to smaller coil elements arranged closer to the head. Future studies will include a comparison of B1 +/sqrt(SAR) for the two coil configurations.
机译:目的/简介:信噪比(SNR)和发射效率是RF线圈设计中最重要的考虑因素。紧密配合的收发器(TxRx)阵列通常用于优化传输效率[1],而大型传输阵列与紧密配合的接收阵列(ToRo)组合用于最佳SNR [2]。在这项研究中,构造了具有8个发射元件和18个接收元件的ToRo线圈,目的是在保持保留仅接收阵列的SNR优势的同时,提高收发器阵列的发射效率。对象和方法:实验是在西门子9.4 T全身扫描仪上进行的。先前已经提出了本研究中使用的紧贴式(20 9 23 cm)8通道TxRx阵列[1]。在新的ToRo线圈中,发射阵列由在圆形管(外径= 26 cm)上的八个均匀间隔的带隙环组成。每个回路都用12个电容器调谐,并通过串联的PIN二极管有效地失谐。相邻的元件被电感解耦。两个发射阵列到屏蔽的长度为10到4 cm。接收部分由18个接收元件组成,这些元件在头盔上排成三排(顶排为9排,第二排和第三排分别为7排和2排)。同一行中的相邻元素进行电感去耦,而下一行的每个元素与上一行的两个元素进行几何去耦。完整的设置如图1所示。结果:相邻发射元件之间的耦合为-20 dB,发射和接收阵列中的有源失谐为-30 dB。与数值模型相比,测得的透射场紧随模拟的预测模式,而中心轴向切片中的平均B1 +(B1 + avg)差异小于9。与TxRx阵列相比,ToRo配置的B1 + avg弱了18个(图2c)。这包括由接收阵列和有源失谐电路引起的额外损耗。不过,ToRo线圈提供的SNR比TxRx配置高得多(图3)。讨论/结论:设计的ToRo阵列提供了较高的B1 +效率,但没有达到紧密配合的TxRx阵列的水平。由于ToRo阵列是与负载松散耦合的,因此不必为每个实验都进行调整和匹配。此外,由于较小的线圈元件更靠近磁头布置,ToRo配置可显着提高SNR和更好的并行成像性能。未来的研究将包括对两种线圈配置的B1 + / sqrt(SAR)进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号